Abstract
The variational quantum eigensolver (VQE) is one of the most representative quantum algorithms in the noisy intermediate-scale quantum (NISQ) era, and is generally speculated to deliver one of the first quantum advantages for the ground-state simulations of some nontrivial Hamiltonians. However, short quantum coherence time and limited availability of quantum hardware resources in the NISQ hardware strongly restrain the capacity and expressiveness of VQEs. In this Letter, we introduce the variational quantum-neural hybrid eigensolver (VQNHE) in which the shallow-circuit quantum Ansatz can be further enhanced by classical post-processing with neural networks. We show that the VQNHE consistently and significantly outperforms the VQE in simulating ground-state energies of quantum spins and molecules given the same amount of quantum resources. More importantly, we demonstrate that, for arbitrary postprocessing neural functions, the VQNHE only incurs a polynomial overhead of processing time and represents the first scalable method to exponentially accelerate the VQE with nonunitary postprocessing that can be efficiently implemented in the NISQ era.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.