In the Grassmannian formulation of the S-matrix for planar N\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\mathcal{N} $$\\end{document} = 4 Super Yang-Mills, Nk−2MHV scattering amplitudes for k negative and n − k positive helicity gluons can be expressed, by an application of the global residue theorem, as a signed sum over a collection of (k − 2)(n − k − 2)-dimensional residues. These residues are supported on certain positroid subvarieties of the Grassmannian G(k, n). In this paper, we replace the Grassmannian G(3, n) with its torus quotient, the moduli space of n points in the projective plane in general position, and planar N\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\mathcal{N} $$\\end{document} = 4 SYM with generalized biadjoint scalar amplitudes mn3\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ {m}_n^{(3)} $$\\end{document} as introduced by Cachazo-Early-Guevara-Mizera (CEGM) [1]. Whereas in the Grassmannian formulation residues of the Parke-Taylor form correspond to individual BCFW, or on-shell diagrams, we show that each such (n − 5)-dimensional residue of mn3\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ {m}_n^{(3)} $$\\end{document} an entire biadjoint scalar partial amplitude mn2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ {m}_n^{(2)} $$\\end{document}, that is a sum over all tree-level Feynman diagrams for a fixed planar order. We make a proposal which would do the same for k ≥ 4.
Read full abstract