Abstract

In the Grassmannian formulation of the S-matrix for planar N\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\mathcal{N} $$\\end{document} = 4 Super Yang-Mills, Nk−2MHV scattering amplitudes for k negative and n − k positive helicity gluons can be expressed, by an application of the global residue theorem, as a signed sum over a collection of (k − 2)(n − k − 2)-dimensional residues. These residues are supported on certain positroid subvarieties of the Grassmannian G(k, n). In this paper, we replace the Grassmannian G(3, n) with its torus quotient, the moduli space of n points in the projective plane in general position, and planar N\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\mathcal{N} $$\\end{document} = 4 SYM with generalized biadjoint scalar amplitudes mn3\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ {m}_n^{(3)} $$\\end{document} as introduced by Cachazo-Early-Guevara-Mizera (CEGM) [1]. Whereas in the Grassmannian formulation residues of the Parke-Taylor form correspond to individual BCFW, or on-shell diagrams, we show that each such (n − 5)-dimensional residue of mn3\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ {m}_n^{(3)} $$\\end{document} an entire biadjoint scalar partial amplitude mn2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ {m}_n^{(2)} $$\\end{document}, that is a sum over all tree-level Feynman diagrams for a fixed planar order. We make a proposal which would do the same for k ≥ 4.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.