This paper summarizes recent advances in the area of gradient algorithms for optimal control problems, with particular emphasis on the work performed by the staff of the Aero-Astronautics Group of Rice University. The following basic problem is considered: minimize a functionalI which depends on the statex(t), the controlu(t), and the parameter π. Here,I is a scalar,x ann-vector,u anm-vector, and π ap-vector. At the initial point, the state is prescribed. At the final point, the statex and the parameter π are required to satisfyq scalar relations. Along the interval of integration, the state, the control, and the parameter are required to satisfyn scalar differential equations. First, the sequential gradient-restoration algorithm and the combined gradient-restoration algorithm are presented. The descent properties of these algorithms are studied, and schemes to determine the optimum stepsize are discussed. Both of the above algorithms require the solution of a linear, two-point boundary-value problem at each iteration. Hence, a discussion of integration techniques is given. Next, a family of gradient-restoration algorithms is introduced. Not only does this family include the previous two algorithms as particular cases, but it allows one to generate several additional algorithms, namely, those with alternate restoration and optional restoration. Then, two modifications of the sequential gradient-restoration algorithm are presented in an effort to accelerate terminal convergence. In the first modification, the quadratic constraint imposed on the variations of the control is modified by the inclusion of a positive-definite weighting matrix (the matrix of the second derivatives of the Hamiltonian with respect to the control). The second modification is a conjugate-gradient extension of the sequential gradient-restoration algorithm. Next, the addition of a nondifferential constraint, to be satisfied everywhere along the interval of integration, is considered. In theory, this seems to be only a minor modification of the basic problem. In practice, the change is considerable in that it enlarges dramatically the number and variety of problems of optimal control which can be treated by gradient-restoration algorithms. Indeed, by suitable transformations, almost every known problem of optimal control theory can be brought into this scheme. This statement applies, for instance, to the following situations: (i) problems with control equality constraints, (ii) problems with state equality constraints, (iii) problems with equality constraints on the time rate of change of the state, (iv) problems with control inequality constraints, (v) problems with state inequality constraints, and (vi) problems with inequality constraints on the time rate of change of the state. Finally, the simultaneous presence of nondifferential constraints and multiple subarcs is considered. The possibility that the analytical form of the functions under consideration might change from one subarc to another is taken into account. The resulting formulation is particularly relevant to those problems of optimal control involving bounds on the control or the state or the time derivative of the state. For these problems, one might be unwilling to accept the simplistic view of a continuous extremal arc. Indeed, one might want to take the more realistic view of an extremal arc composed of several subarcs, some internal to the boundary being considered and some lying on the boundary. The paper ends with a section dealing with transformation techniques. This section illustrates several analytical devices by means of which a great number of problems of optimal control can be reduced to one of the formulations presented here. In particular, the following topics are treated: (i) time normalization, (ii) free initial state, (iii) bounded control, and (iv) bounded state.