Abstract
The global positioning system (GPS) equations are usually solved with an application of Newton's method or a variant thereof: Xn+1 = xn + H-1(t - f(xn)). (1) Here x is a vector comprising the user position coordinates together with clock offset, t is a vector of tour pseudorange measurements, and H is a measurement matrix of partial derivatives H = fx· In fact the first fix of a Kalman filter provides a solution of this type. If more than four pseudoranges are available for extended batch processing, H-1 may be replaced by a generalized inverse (HTWH)-1HTW, where W is a positive definite weighting matrix (usually taken to be the inverse of the measurement covariance matrix). This paper introduces a new method of solution that is algebraic and noniterative in nature, computationally efficient and numerically stable, admits extended batch processing, improves accuracy in bad geometric dilution of precision (GDOP) situations, and allows a "cold start" in deep space applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Aerospace and Electronic Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.