Condensing flow induced vibration (CFIV) of the rotor blade is a tough problem for designers of nuclear turbines because nonequilibrium condensing flow excitation (NECFE) is hard to be directly modeled. Generally, in design, NECFE is assumed as equilibrium condensing flow excitation (ECFE), of which the pressure fluctuations caused by phase temperature difference (PTD) between gaseous and liquid are ignored. In this paper, a novel method to calculate the equivalent load of NECFE based on the principle of virtual work was proposed. This method could consider the effects of PTD-induced pressure fluctuations by simulating nonequilibrium condensation with ANSYS cfx, and improve computational efficiency. Once the equivalent NECFE load is determined, CFIV of the rotor blade, which was modeled as a pretwisted asymmetric cantilever beam, can then be predicted by the finite element method (FEM). Additionally, to estimate the effects of PTD-induced pressure fluctuations, comparisons between NECFE and ECFE as well as their induced vibrations were presented. Results show that PTD in nucleation area could change the position and type of shock waves, restructure the pressure distribution, as well as enhance the pressure fluctuations. Compared with ECFE, the frequency ingredients and amplitude of the equivalent NECFE load and its induced vibrations are increased. Specifically, the amplitude of the equivalent NECFE load is increased by 9.38%, 15.34%, and 7.43% in the tangential component, axial component, and torsion moment. The blade vibration responses induced by NECFE are increased by 11.66% and 19.94% in tangential and axial.
Read full abstract