We discuss how the presence of a slow binding site in molecular motor traffic gives rise to defect-induced ”traffic jams” that have properties different from those of the well-studied boundary-induced jams that originate from an imbalance between initiation and termination. To this end we analyze in detail the stationary distribution of a lattice gas model for traffic of molecular motors with a defect. In particular, we obtain analytically the exact spatial distribution of motors, the probability distribution of the random position of the molecular traffic jam and we report unexpected spatial anticorrelations between local molecular motor densities near the defect.
Read full abstract