In this work, copper sulfide (CuS) nanostructure was deposited on a porous silicon wafer for the visible light by spray pyrolysis method. Through this, a series of devices were suggested as a part of the deposit concentration of CuS on n-type porous silicon. Simultaneously, the physical features of the attained film were illustrated. FESEM exhibited that the average nanoparticle diameter increased with the concentration of CuS at orientation (100) and was found to be 47.84 nm, 56.36nm and 71.32nm, while the average diameter at (111) orientation was found to be 37.64 nm, 41.46nm, 55.22 nm of 0.1, 0.3 and 0.5M respectively. In addition to the atomic force microscope (AFM) showed the roughness and uniformity of the CuS/PSi fabricated decreased with increasing concentration of CuS, In detail, the attained photo-responsivity and specific detectivity were observed to be 210 mW/A, 340 mW/A and 3×1010 Jones, 4.2×1010 Jones at orientation (100 )using concentration of 0.1M and 0.5M respectively . On the other hand, the photo-responsivity and specific detectivity were observed to be 260 mW/A, 380 mW/A and 1.8 ×1010 Jones, 4.5×1010 Jones at orientation (111) using concentrations of 0.1M and 0.5M respectively. The presented work shows a substitutional system for an economical and environmentally friendly optoelectronic scheme. The photo-responsive considered to be in a positive linear relationship with the used concentration.