Nitroaromatic compounds (NACs) cause severe hazardous impacts on human health as well as on the environment. Therefore, there is dire need to develop a robust material to reduce the toxicity of these organic pollutants. In this regard, our group developed a series of porous MOF materials viz., Pdx@IRMOF-9 (x=2 %, 5 % and 10 %) by loading different concentration of Pd(II) on IRMOF-9 and explored them towards reduction of different nitroaromatic compounds. Pd10%@IRMOF-9showed ~30 % greater efficiency for the reduction of 4-NP as compared to Pd2%@IRMOF-9. Pd10%@IRMOF-9showed excellent reduction ability (>85 %) towards 4-NP, 2-NP, 2-NA, 3-NA and 2,4-DNPH. The kinetic studies indicates that the reduction follows the pseudo-first-order kinetics. Moreover, the rate constant value for reduction of 3-NA was ~9 times higher than that of 2-NP. Based on the kinetic parameters, the t1/2 values for all the nitroaromatics have been calculated. The kinetic parameters, Km and Vmax have been calculated from double reciprocal Lineweaver-Burk plot and found to be 65.984 μM and 116×10-6 Mmin-1 respectively. Pd10%@IRMOF-9showed excellent recyclability towards the reduction of 4-NP for few consecutive cycles without any remarkable loss in its activity. Thus, highly efficient, porous and robust material for the reduction of nitroaromatic compounds in aqueous media have been demonstrated.