Abstract

Immobilization of free enzymes facilitates their recovery and reuse, while also enhances their enzymatic characteristics. Hierarchically porous metal-organic frameworks (HP-MOFs) are promising candidates for enzyme immobilization. However, fabrication of HP-MOFs with more kinds of components as ligands is still a challenge. Herein, ultrastable crystalline MOFs with micro-, meso- and macroporous structure were constructed using guanosine 5′-monophosphate (GMP) as organic ligand through templated emulsification method. HP-MOFs crystals with the near rhomb-like, rod-like and slab-like morphology were interestingly obtained from Zn2+, Cu2+ and Cd2+ respectively. The HP-MOFs immobilized enzymes exhibited an enhanced enzymatic activity and stability. In addition, the immobilized CALB (Candida antarctica lipase B) showed great glycerolysis and esterification performances for glycerides preparation, with diacylglycerols (DAG) content over 60 wt% and triacylglycerols (TAG) content over 90 wt% obtained respectively from glycerolysis and esterification. Moreover, it retained 82.32 % of its initial glycerolysis activity after six cycles of reuse in glycerolysis. The present study will provide clues and show new horizons to explore new organic ligands for HP-MOFs fabrication, as well as to expand the applications of HP-MOFs and their supported enzymes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.