Many infrastructural concrete facilities, such as dams, bridge footings, foundations of port facilities and offshore drilling platforms, operate in a permanent contact with water. The permeable fractured-porous structure of concrete determines the water-saturated state of the surface layers of such concrete elements. Under dynamic contact loading, the pore fluid is capable of exerting a significant mechanical influence on the local stress-strain state and strength characteristics of the surface layers of concrete. This has to be taken into account when assessing the wear intensity of surface layers and predicting a concrete element’s service life. The aforesaid determines the relevance of the study aimed at identifying the influence of the pore fluid and characteristics of the concrete pore structure on the strength and fracture pattern under quasistatic and dynamic compressive loading. The present work is devoted to the theoretical study and generalization of the laws of mechanical influence of the pore fluid on the dynamic strength of high-strength concrete with a two-scale pore structure. The emphasis in the study is on analyzing the contributions of each of the pore subsystems to the integral mechanical effect of the fluid. To carry out such an analysis, a coupled hydromechanical model is developed. It takes into account the compositional structure of concrete, the presence of a pore space in a cement stone of two different scales, the interaction of a pore liquid and a solid-phase skeleton based on the Bio poroelasticity model, as well as fluid filtration in a pore space. By using the developed model were performed the numerical studies of the dependence between the compressive strength of the representative concrete volumes of the mesoscopic scale on the strain rate, the sample size, the pore fluid viscosity, and pore structure parameters. The simulation results showed the possibility of combining the obtained dependencies into a generalized (master) curve in terms of a combined dimensionless parameter, which has the meaning similar to the Darcy number. We identified two key factors that control the type and parameters of the concrete master curve of the dynamic strength. The first factor is the mobility of the pore fluid in the network of the capillary pores. It determines the rate of stress equalization in the porous skeleton due to fluid flow. The second factor is the interconnection of large micropores with the network of the small capillary pore channels. It determines the magnitude of the decrease in stress concentration in micropores by filtering the excess pore fluid into the capillary pore network. It is shown that the contributions of these two factors to the amplitude of variation of the dynamic strength of the water-saturated concrete are additive, and their total contribution reaches 25 %.
Read full abstract