Deoxynivalenol (DON) can easily injure the intestinal tract, which represents the first barrier against food contaminants. The intestinal toxicity induced by DON was mainly focused on mitogen-activated protein kinase (MAPK) activation, however, the underlying mechanisms by which DON triggers apoptosis by other pathways remain poorly understood. In this study, the Janus kinase 2/signal transducers and activators of transcription 3 (JAK2/STAT-3) pathway was proposed to regulate the intrinsic apoptosis induced by DON and thoroughly investigated in intestinal porcine epithelial cells (IPEC-J2). First, DON was found to be able to efficiently inhibit cell viability and increase the release of lactate dehydrogenase. It could also enhance the activity of the cleaved caspase-3 in a time-dependent manner, accompanied by a loss of mitochondrial membrane potential and an up-regulation of the apoptosis rate. Then, the expression of genes associated with inflammation and apoptosis were investigated. DON increased the expression of IL-6, IL-1β, TNF-α, SOCS3 and Bax, but decreased the expression of Bcl-2 and Bcl-xL. Moreover, we discovered that DON robustly inhibited STAT-3 activity together with the down-regulation of JAK2, Bcl-2 and Bcl-xL, paralleling the increase in p38 phosphorylation. Furthermore, a pharmacological activation of JAK2/STAT-3 alleviated DON induced-apoptosis. Concurrent with the apoptotic pathway, during the initial exposure to DON (first 4 h), a survival pathway involving phosphorylated Erk1/2, Akt, and FoxO1 was also observed. Thus, apoptosis induced by DON was Janus faced: although the survival pathway was activated, the DON-induced apoptotic JAK2/STAT-3/caspase-3 pathway dominated, leading to an imbalance in cell homeostasis. This study provides a novel avenue to comprehensively reveal the pathological mechanisms of DON-induced intestinal disorders, which is promising for future applications to other contaminants in food and feed.
Read full abstract