Abstract

Post-weaning diarrhea caused by enterotoxigenic Escherichia coli F18 (E. coli F18) causes significant economic losses for pig producers. N6-methyladenosine (m6A) is a highly abundant epitranscriptomic marker that has been found to be involved in regulating the resistance of host cells to pathogenic infection, but its potential role in E. coli F18-exposed intestinal porcine epithelial cells (IPEC-J2) remains undetermined. Here, we demonstrated that m6A and its regulators modulate E. coli F18 susceptibility. Briefly, we revealed that the Wilms' tumor 1-associating protein (WTAP) expressions were markedly elevated in IPEC-J2 cells upon E. coli F18 exposure. WTAP are required for the regulation of E. coli F18 adhesion in IPEC-J2 cells. Additionally, WTAP knockdown significantly suppressed m6A level at N-acetyllactosaminide beta-1,6-N-acetylglucosaminyl-transferase (GCNT2) 3'UTR, resulting in the enhancement of TH N6-methyladenosine RNA binding protein 2 (YTHDF2)-mediated GCNT2 mRNA stability. Subsequently, the altered GCNT2 expressions could inhibit the glycosphingolipid biosynthesis, thus improving resistance to E. coli F18 infection in IPEC-J2. Collectively, our analyses highlighted the mechanism behind the m6A-mediated management of E. coli F18 susceptibility, which will aid in the development of novel approaches that protect against bacterial diarrhea in piglets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call