Novel approaches to understanding the observed properties of interacting binaries containing compact accretors such as neutron stars and white dwarfs are examined. Explaining the evolution of these systems is a computationally challenging problem because the vector space of initial conditions that describes the progenitor binaries is wide-ranging. There are large variations in the chemical abundance (e.g., metallicity), binary mass correlations, and assumed input physics. In this paper we compare two very different strategies to synthesize a specific subset of the currently observed population of compact binaries. Both involve the pre-computing a large grid of representative models. In the first case, the grid of initial conditions is densely packed thereby allowing us to identify the spectrum of initial conditions and the most probable evolutionary channels leading to the formation of the observed binaries. In the second, the grid is accurately interpolated to provide us with the ensemble properties of the currently observed population of interacting binaries (e.g., Cataclysmic Variables). As an example of the utility of the first approach, we have taken advantage of the multicore processing power of the fast, new stellar evolution code known as MESA to compute an extensive grid of binary evolution tracks for low- and intermediate-mass X-ray binaries. The grid is about two orders of magnitude larger than any previous computation of X-ray binary evolution and includes more than 40,000 models. It comprises 60 initial donor masses over the range of 1 to 4 M⊙ and, for each of these, 700 initial orbital periods over the range of 10 to 250 hours were chosen. Using a 'traceback' analysis, we show how the extremely massive neutron star (1.97 M⊙) in the binary pulsar PSR J1614-2230 is likely to have evolved. We find that the initial donor stars which produce the closest relatives to PSR J1614-2230 are likely to have had a mass of between approximately 3.4 to 3.8 M⊙. Nonetheless, we conclude that it is difficult to form high-mass neutron stars unless they are born with masses larger than the 1.4 M⊙ canonical value.
Read full abstract