As urbanization accelerates, urban greenery, particularly street greenery, emerges as a vital strategy for enhancing residents’ quality of life, demanding attention for its alignment with pedestrian flows to foster sustainable urban development and ensure urban dwellers’ wellbeing. The advent of diverse urban data has significantly advanced this area of study. Focusing on Chengdu’s central urban district, this research assesses street greening metrics against pedestrian flow indicators, employing spatial autocorrelation techniques to investigate the interplay between street greenery and pedestrian flow over time and space. Our findings reveal a prevalent negative spatial autocorrelation between street greenery and pedestrian flow within the area, underscored by temporal disparities in greenery demands across various urban functions during weekdays versus weekends. This study innovatively incorporates mobile phone signal-based population heat maps into the mismatch analysis of street greenery for the first time, moving beyond the conventional static approach of space syntax topology in assessing pedestrian flow. By leveraging dynamic pedestrian flow data, it enriches our understanding of the disconnect between street greening plans and pedestrian circulation, highlighting the concept of urban flow and delving into the intricate nexus among time, space, and human activity. Moreover, this study meticulously examines multiple street usage scenarios, reflecting diverse behavior patterns, with the objective of providing nuanced and actionable strategies for urban renewal initiatives aimed at creating more inviting and sustainable urban habitats.