Aluminum (Al) is a widely used metal fuel for energetic applications ranging from space propulsion and exploration, and materials processing, to power generation for nano- and microdevices due to its high energy density and earth abundance. Recently, the ignition and combustion performance of Al particles were found to be improved by graphene-based additives, such as graphene oxide (GO) and graphene fluoride (GF), as their reactions provide heat to accelerate Al oxidation, gas to reduce particle agglomeration, and fluorine-containing species to remove Al2O3. However, GF is not only expensive but also hydrophobic with poor mixing compatibility with Al particles. Herein, we report a multifunctional graphene-based additive for Al combustion, i.e., perfluoroalkyl-functionalized graphene oxide (CFGO), which integrates the benefits of GO and GF in one material. We compared the effects of CFGO to GO and GF on the ignition and combustion properties of nAl particles using thermogravimetric analysis, differential scanning calorimetry, temperature-jump ignition), Xe flash ignition, and constant-volume combustion test. These experiments confirm that CFGO generates fluorine-containing species, heat, and gases, which collectively lower the ignition threshold, augment the energy release rate, and reduce the combustion product agglomeration of nanosized Al particles, outperforming both GO and GF as additives. This work shows the great potential of using multifunctionalized graphene as an integrated additive for enhancing the ignition and combustion of metals.