Stochastic optimization has established itself as a major method to handle uncertainty in various optimization problems by modeling the uncertainty by a probability distribution over possible realizations. Traditionally, the main focus in stochastic optimization has been various stochastic mathematical programming (such as linear programming, convex programming). In recent years, there has been a surge of interest in stochastic combinatorial optimization problems from the theoretical computer science community. In this article, we survey some of the recent results on various stochastic versions of classical combinatorial optimization problems. Since most problems in this domain are NP-hard (or #P-hard, or even PSPACE-hard), we focus on the results which provide polynomial time approximation algorithms with provable approximation guarantees. Our discussions are centered around a few representative problems, such as stochastic knapsack, stochastic matching, multi-armed bandit etc. We use these examples to introduce several popular stochastic models, such as the fixed-set model, 2-stage stochastic optimization model, stochastic adaptive probing model etc, as well as some useful techniques for designing approximation algorithms for stochastic combinatorial optimization problems, including the linear programming relaxation approach, boosted sampling, content resolution schemes, Poisson approximation etc. We also provide some open research questions along the way. Our purpose is to provide readers a quick glimpse to the models, problems, and techniques in this area, and hopefully inspire new contributions .
Read full abstract