Resistive skin biosensors refer to a class of imperceptible wearable devices for health monitoring and human-machine interfacing, in which conductive materials are deposited onto or incorporated into an elastomeric polymeric sheet. A wide range of resistive skins has been developed so far to detect a wide variety of biometric signals including blood pressure, skin strain, body temperature and acoustic vibrations; however, they are typically non-specific, with one resistive signal corresponding to a single type of biometric data (one-mode sensors). Here we show a hierarchically resistive skin sensor made of a laminated cracked platinum film, vertically aligned gold nanowires and a percolated gold nanowire film, all integrated into a single sensor. As a result, hierarchically resistive skin displays a staircase-shaped resistive response to tensile strain, with distinct sensing regimes associated to a specific active material. We show that we can, through one resistive signal, identify up to five physical or physiological activities associated with the human throat speech: heartbeats, breathing, touch and neck movement (that is, a multimodal sensor). We develop a frequency/amplitude-based neural network, Deep Hybrid-Spectro, that can automatically disentangle multiple biometrics from a single resistive signal. This system can classify 11 activities-with different combinations of speech, neck movement and touch-with an accuracy of 92.73 ± 0.82% while simultaneously measuring respiration and heart rates. We validated the classification accuracy of several biometrics with an overall accuracy of >82%, demonstrating the generality of our concept.
Read full abstract