Abstract

Experimental and numerical investigations were carried out to evaluate the effects of incorporating recycled coarse aggregates (RCA) on the mechanical behaviour of inner steel-tube reinforced concrete columns exposed to high temperature. The specimens were reinforced with basalt fibres (BF) and strengthened by carbon fibre reinforced polymer (CFRP) sheets, which were subjected to mechanical loading in monotonous and cyclic arrangements. Test results show that at room temperature (RT), incorporation of the chopped BF has reduced both the tensile strength and flexural strength of concrete specimens prepared with recycled aggregate concrete (RAC) but not their static elastic modulus. On the other hand, the BF has improved crack resistance of the steel tube reinforced RAC (STRC) column specimens. Also, the reduction in mass and dynamic elastic modulus of BF reinforced STRC specimens are lower than those of STRC at a given RCA replacement ratio and exposure temperature. Furthermore, improvements in mechanical performance under monotonous and fatigue loading was observed for STRC columns reinforced with BF and externally bonded CFRP sheets with high-temperature exposure (HTE). Therefore, it is possible that BF reinforced STRC columns could be used to reduce risk of brittle structural collapse when exposed to fire or elevated temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.