Solution blowing is a rapidly developing technology for the rapid and large-scale preparation of nanofibers, driven by its advantages, such as wide adaptability to raw materials, simple and safe operation, and ease of scalable production. Most of the research related to solution blowing mainly focuses on the fiber spinning and forming principle, fiber structure and properties, and the development of new materials. Limited studies have focused on the airflow field and fiber motion in solution blowing. In this paper, nine nozzles for solution blowing with varying geometrical parameters were designed by adjusting the outer nozzle diameter, inner nozzle outstretched distance, and inner nozzle diameter. The centerline airflow velocity, turbulence intensity, and velocity distribution of the solution blowing were analyzed using the numerical simulation method. The results showed that the outer nozzle diameter had the greatest influence on the air velocity and turbulence intensity. The airflow velocity increased and the turbulence intensity decreased with the increase of the outer nozzle diameter. The inner nozzle outstretched distance only affected the airflow convergence point and had less effect on the airflow velocity and turbulence intensity. The captured trajectory of the polymer jet initially shows a straight or slightly curved development that eventually diverges from the airflow field. With an increasing distance, dispersed fibers exhibit instability, including loop formation, bonding, and separation. The experimental observation of fiber morphology in the solution-blowing web further verified the instability during the fiber movement.