Abstract

Electrospun fibers of amorphous or low-crystallinity polymers typically exhibit a low molecular orientation that can hamper their properties and application. A key stage of the electrospinning process that could be harnessed to mitigate the loss of orientation is jet rigidification, which relates closely to the solvent evaporation rate. Here, we establish quantitative Raman methods to assess the molecular orientation and crystallinity of weakly crystalline poly(2,6-dimethyl-1,4-phenylene oxide) fibers with varying diameters. Our findings demonstrate that solvent volatility can be leveraged to modulate the orientation and crystallinity through its impact on the effective glass transition temperature (Tg,eff) of the polymer jet during the electrospinning process. Specifically, a highly volatile solvent yields a higher and more sustained orientation (median ⟨P2⟩ of 0.53 for diameters < 1.0 µm) because its fast evaporation rapidly increases Tg,eff above room temperature. This vitrification early along the jet path promotes the formation of an oriented amorphous phase and a moderate fraction of strain-induced crystals. Our data reveals that a high Tg is a crucial parameter for reaching high orientation in amorphous or low-crystallinity polymer systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.