Herein, mechanically robust and flexible graphene oxide/polyimide (GO/PI) hybrid aerogels (GIAs) were fabricated by a facile method, in which the mixed suspensions of the water-soluble polyimide precursor and graphene oxide (GO) sheets were freeze-dried, which was followed by a routine thermal imidation process. The porous GIAs obtained not only exhibit excellent elasticity and extremely low density values (from 33.3 to 38.9 mg.cm-3), but they also possess a superior compressive strength (121.7 KPa). The GIAs could support a weight of up to 31,250 times of its own weight, and such a weight-carrying capacity is much higher than that of other typical carbon-based aerogels. Having such a porous structure, and high strength and toughness properties make GIAs ideal candidates for oil spill cleanup materials. The oil/organic solvents' absorption capacity ranges from 14.6 to 85, which is higher than that of most other aerogels (sponges). With their broad temperature tolerance and acidic stability, the unique multifunctional GIAs are expected to further extend their application range into extreme environments.
Read full abstract