Abstract

The development of flexible MXene-based multifunctional composites is becoming a hot research area to achieve the application of conductive MXene in wearable electric instruments. Herein, a flexible conductive polyimide fiber (PIF)/MXene composite film with densely stacked "rebar-brick-cement" lamellar structure is fabricated using the simple vacuum filtration plus thermal imidization technique. A water-soluble polyimide precursor, poly(amic acid), is applied to act as a binder and dispersant to ensure the homogeneous dispersion of MXene and its good interfacial adhesion with PIF after thermal imidization, resulting in excellent mechanical robustness and high conductivity (3787.9 S/m). Owing to the reflection on the surface, absorption through conduction loss and interfacial/dipolar polarization loss inside the material, and the lamellar structure that is beneficial for multiple reflection and scattering between adjacent layers, the resultant PIF/MXene composite film exhibits a high electromagnetic interference (EMI) shielding effectiveness of 49.9 dB in the frequency range of 8.2-12.4 GHz. More importantly, its EMI shielding capacity can be well maintained in various harsh environments (e.g., extreme high/low temperature, acid/salt solution, and long-term cyclic bending), showing excellent stability and durability. Furthermore, it also presents fast, stable, and long-term durable Joule heating performances based on its stable and excellent conductivity, demonstrating good thermal deicing effects under actual conditions. Therefore, we believe that the flexible conductive PIF/MXene composite film with excellent conductivity and harsh environment tolerance possesses promising potential for electromagnetic wave protection and personal thermal management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.