Clanis bilineata Walker, soybean hawkmoth, belongs to the subfamily Ambulicinae (Sphingidae, Lepidoptera) and is an edible insect that usually grows on soybean leaves. In this study, we isolated a new cypovirus from naturally diseased Clanis bilineata larvae (named CbCPV), scanned its structure, sequenced its genome, and studied its phylogenetic relationship to other cypoviruses. Microscopy showed that CbCPV polyhedral occlusion bodies were about 1.878μm on average and contained many virions in the ultrathin sections. The complete genome sequence of CbCPV is 22,812bp comprising 10 segmented double-stranded RNAs. Apart from segment 1 containing one open reading frame (ORF) and one sub-ORF, the other nine segments all contain one open reading frame and encoded one putative protein. The non-coding regions contained conserved sequences at 5' termini (AGUCAAA) and 3' termini (AGC), except segment 4 containing a different 5' termini (AUGUUUA). The whole sequence of the polyhedrin gene in CbCPV contained 892 nucleotides, encoding a protein of 246 amino acids. Based on amino acid sequences of polyhedrin or RNA dependent RNA polymerase (RdRp), the phylogenetic analysis indicated that CbCPV was closely related to DnCPV-23. The putative function of all segments differed from each other, but the most closely related species of segments were DnCPV-23 with 98.2-99.8% nucleotide identity. Overall, the evidence of morphology, protein analysis and nucleic acids (genomic pattern) showed that CbCPV is a new isolate in the cypovirus-23 type and can be termed Clanis bilineata cypovirus type 23 (CbCPV-23).
Read full abstract