The presence of defects in concrete can diminish load-bearing capacity of structures, giving rise to potential concerns regarding safety and durability. Thus, a method that enhances the sensitivity, resolution and robustness of damage localization is critically necessary to assess the condition of concrete structures. This research presents a damage localization method based on Bayesian probabilistic fusion, and uncertainties from measurement and identification process are considered and quantified. The likelihood function is constructed based on the hyperbola-based damage localization method, and the posterior distributions of unknown parameters are calculated via Bayesian theorem combined with measurement data. Furthermore, a meso-level finite element model is established, wherein the concrete medium is considered as a three-phase composite material consisting of polygonal aggregates, mortar matrix and interface transition zones. Owing to the meso-level modeling, the propagation behavior of stress waves within concrete and complicated interactions between stress waves and concrete internal structures can be better characterized. Finally, the damage information, time-difference-of arrival, is extracted from the response signals and the efficiency of the proposed method is verified numerically. The numerical results demonstrate that the proposed probabilistic fusion method outperforms the conventional hyperbola-based method in terms of achieving high spatial resolution and resilience in damage localization.
Read full abstract