Contact antimicrobial coatings have been a subject of increasing interest partly because of the contribution of biocide release coatings to antibiotic resistance. The surface hydrophobicity of these coatings can enhance their effectiveness and stability. In this work, polyethyleneimine (PEI) was quaternized with 1-bromoalkane and iodomethane, and a concept for antimicrobial coatings was developed on the basis of the polyelectrolyte multilayered films. The multilayered films were endowed with antibacterial property by grafting modified polycation (higher charge density) and with fouling-release property by constructing microstructures and nanostructures with low surface energy (long alkyl chains). The resultant polycation-coated substrates were able to kill the encountered bacterial cells on contact, and to release the dead bacteria and organic particles. The conclusion demonstrated that the microbicidal functionality could be imparted onto surfaces using layer-by-layer (LbL) self-assembly technology by using the right combination of molecular technologies and surface nanostructures, as well as the assembly and/or post-assembly experimental technical factors.
Read full abstract