Abstract

HypothesisThe application of an external electric Field (E-Field) to control layer-by-layer (LBL) growth of polyelectrolyte multilayers (PEM) typically involves hydrolysis of the water at the electrodes. We hypothesize that by isolating the electrodes from contact with the water, high E-Fields could be used to control the conformation of the polyelectrolytes in the solution phase and thus, enable non-chemical control of the LBL growth. ExperimentalAttenuated total reflectance infrared spectroscopy was used to monitor the bound fraction and adsorbed amount as a function of time for the sequential addition of polyacrylic acid and polydiallyldimethylammonium chloride adsorbed on a TiO2 film under the applied E–Field. FindingsThe direction of the E–Field relative to the TiO2 film controlled the PEM growth, resulting in non-linear growth or decay. In the case of non-linear LBL decay, there was a decrease in adsorbate mass in successive layers to a point of no growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.