Understanding how the spatial distribution of adhesive ligands regulates cell behavior is crucial for designing biomaterials. This study investigates how precisely controlled ligand spacing affects cell spreading and integrin subtype engagement. Using engineered polyacrylamide hydrogels with gold nanoparticle arrays, we explored the impact of RGD ligand spacings (30 and 150 nm) on human mesenchymal stromal cells. Cells exhibited distinct morphological behaviors: smaller spacings promoted larger spreading areas, while larger spacings resulted in elongated shapes with reduced spreading. Mechanistically, we found that the α5β1 integrin, not the αvβ3 integrin, played a central role in mediating these responses, alongside lamellipodia formation. Our findings provide critical insights into the spatial sensing of ligands, highlighting the influence of ligand spacing on cellular mechanotransduction and integrin-specific responses. This work advances the understanding of cell-material interactions and offers potential strategies for designing biomaterials to guide cell behavior in tissue engineering.
Read full abstract