A significant environmental concern globally is the pollution of water bodies as a result of heavy metals. To date, various attempts have been made to effectively remove heavy metals, such as those that use synthetic and biogenic materials to abate and control water pollution. The biological removal of pollutants from water is an efficient and environmentally friendly technique. In this study, we evaluated the biosorption characteristics of Zn2+ ions from aqueous solution by spent composed of raw Agaricus biosporium (RAB) and A. biosporium (SCAB). We added different biosorption doses, metal ions, and initial concentrations of pollutants to explore the adsorption of Zn2+ by RAB and SCAB. We applied pseudo-first- and second-order models to investigate the biosorption kinetics. According to our results, the rate of Zn2+ removal from the aqueous solution using raw biomass was significantly lower than that using sodium citrate-treated biomass of SCAB. When the Zn2+ concentration increased from 10 mg L−1 to 200 mg L−1, the rate of removal of RAB decreased from 73.9% to 38.4%, and that of Zn2+ by SCAB decreased from 99.9% to 75.9%. As we increased the biosorbent dose, the rate of Zn2+ removal by SCAB increased. Interestingly, Zn2 biosorption was inhibited by heavy co ions (Cu2+ and Pb2+) and light metals (e.g., Na+, Mg2+, K+, and Ca2+). When treating wastewater polluted with Zn2+, Pb2+, and Cu2+, SCAB showed good potential. The results of this study provide a scientific basis for an environmentally sound approach to controlling water pollution.