Complex mixtures of air pollutants, including ozone (O3), carbon monoxide (CO), sulfur dioxide (SO2), nitrogen dioxide (NO2), black carbon (BC), and fine particulate matter (PM2.5), present significant health risks. To understand the factors influencing air pollution levels and their temporal variations, comprehensive high-resolution long-term air pollution data are essential. This study analyzed the characteristics, lagged meteorological effects, and temporal patterns of six air pollutant concentrations over a one-year period at an urban residential site in Kenitra, Morocco. The results reveal pronounced seasonal and diurnal variations in pollutant levels, shaped by meteorological factors, emission sources, and local geographic conditions. PM2.5, SO2, and CO concentrations peaked during winter, while NO2 and CO exhibited consistent diurnal peaks during morning and evening rush hours across all seasons, driven by traffic emissions and nocturnal pollutant accumulation. In contrast, O3 concentrations were highest during summer afternoons due to photochemical reactions fueled by strong UV radiation, while winter levels were the lowest due to reduced sunlight. Lagged meteorological effects further highlighted the complexity of air pollutant dynamics. Meteorological factors, including temperature, wind speed, humidity, and pressure, significantly influenced pollutant levels, with both immediate and lagged effects observed. Lag analyses revealed that PM2.5 and BC levels responded to wind speed, temperature, and humidity over time, highlighting the temporal dynamics of dispersion and accumulation. CO is sensitive to temperature and pressure changes, with delayed impacts, while O3 formation was primarily influenced by temperature and wind speed, reflecting complex photochemical processes. SO2 concentrations were shaped by both immediate and lagged meteorological effects, with wind direction playing a key role in pollutant transport. These findings emphasize the importance of considering both immediate and lagged meteorological effects, as well as seasonal and diurnal variations, in developing air quality management strategies.
Read full abstract