Abstract
Abstract Laminar airflow (LAF) is essential for maintaining a sterile environment in operating rooms, but its rapid unidirectional flow decay leads to low airflow efficiency and increases energy consumption. The objective of this study is to investigate the energy-saving and air quality benefits of using a low-turbulence air curtain around laminar airflow, which is referred to as protective laminar airflow (PLAF). Numerical simulations were used to model airflow and particle transport, and a series of experiments were conducted in a real operating room at St. Olavs Hospital, Norway, to validate the simulation results. The findings indicate that when the unidirectional airflow supply velocity is maintained at 0.25 m/s, combined with an air curtain that has the width of 2 cm and the velocity of 1.5 m/s, the PLAF system outperforms the conventional LAF system operating at a unidirectional airflow supply velocity of 0.30 m/s. This configuration results in a 17.3% energy saving, showing the potential of this airflow distribution strategy to enhance both cleanliness and energy efficiency.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have