Inspired by intelligent skin, this research constructs a soft pneumatic robotic architectural system based on the interaction between inflatable material agents and the human body. It aims to provide flexibly changeable scene modes for dynamic inhabiting through responsive spatial performance. From the idea of the Fun Palace and the structure and performance spatial methodology to the proposal of responsive/soft architecture and relevant examples such as Furl and Robot Soft, the literature review provides the foundation and direction for the establishment of research experiments. The research methodology is based on structure and performance, oriented to explore soft material agents, link input information and output modules to realize the manifestation of human-space interaction and spatial performance and assemble the basic configuration of the system. As a result, a synergistic architectural interaction system like a media center that can provide a variety of adaptive space scenes is built, which can realize real-time perception and responsive control of the interactive process, and at the same time provide richness of scene performance beyond established architectural configurations, confirming the possibility of creating a behaviorally responsive architecture by integrating modularly morphing spaces, AI-sensing systems, and interaction technologies. This study explored responsive human settlements by expanding soft pneumatic robots in architecture. It can expand to fields such as machine cognition at the input level, further realize the real-time feedback system at the output level, and can evolve with the information interconnection of urban landscapes and residential communities in terms of spatial interaction. The work gives a convincing vision of architectural intelligence through soft robotics and is expected to continue to develop and bring more inspiring innovations with its integrated methods and connotations.
Read full abstract