Abstract

Although various soft pneumatic actuators have been studied, their performance, including load capacity, has not been satisfied yet. Enhancing their actuation capability and using them to develop soft robots with high performance is still an open and challenging issue. In this study, we developed novel pneumatic actuators based on fiber-reinforced airbags as a solution to this problem, of which the maximum pressure reaches more than 100 kPa. Through cellular rearrangement, the developed actuators could bend uni- or bidirectionally, achieving large driving force, large deformation, and high conformability. Hence, they could be used to develop soft manipulators with relatively large payload (up to 10 kg, about 50 times the body self-weight) and soft climbing robots with high mobility. In this article, we first present the design of the airbag-based actuators and then model the airbag to obtain the relationship between the pneumatic pressure, external force, and deformation. Subsequently, we validate the models by comparing the simulated and measured results and test the load capacity of the bending actuators. Afterward, we present the development of a soft pneumatic robot that can rapidly climb horizontal, inclined, and vertical poles with different cross-sectional shapes and even outdoor natural objects, like bamboos, at a speed of 12.6 mm/s generally. In particular, it can dexterously transition between poles at any angle, which, to the best of our knowledge, has not been achieved before.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.