An integrated microfluidic immunoassay system was established for high throughput analysis of clenbuterol. This system consisted of an integrated microchip and a linear confocal laser induced fluorescence (LIF) scanner. The microchip was composed of three layers: a fluidic channel layer, a PDMS membrane layer and a pneumatic control layer. The multi-layer chip was integrated with 36 pneumatic micro-valves and multiple micro-pumps to realize the flexible reagent delivery, facilitating the automatic assays with less consumption of samples and reduced analysis time. The homemade LIF scanner was able to simultaneously detect multi-channels and provide the potential capability of high throughput assays. The performance of the system was demonstrated by the determination of clenbuterol, one of the most widely used beta-agonists. Under the optimal conditions, the linear range and the limit of detection of clenbuterol were 0 approximately 5.0 ng mL(-1) and 0.088 ng mL(-1), respectively. The recovery rates determined with pig urine samples of 1.0 ng mL(-1) and 2.0 ng mL(-1) were 98.74% and 102.51% (n = 3), respectively. The total detection time was less than 30 min. The system had the potential application for rapid detection of multiple beta-agonists in clinical, pharmaceutical and chemical analyses.
Read full abstract