Atom transfer free radical polymerization (ATRP) was employed in a synthesis of graft polymer EVA-g-PMMA with controlled length of side PMMA chains. Three steps of synthesis: partial hydrolysis of EVA, esterification with chloroacetyl chloride and ATRP grafting were performed to produce EVAOH, macroinitiator EVACl and grafted polymers G8020 (EVA/PMMA = 80/20 wt%) and G6040 (EVA/PMMA = 60/40 wt%). FTIR, Raman and NMR spectroscopy were used in the determination of the chemical structure and modification of EVA. Transmitted light and dark field microscopy showed higher affinity for coil formation of EVA-g-PMMA with longer PMMA side chains, i.e. G6040 compatibilizer. Morphological, thermal and adhesive properties of optical fiber adhesives of graft polymers and polymer blends poly(ethylene-co-vinyl acetate)-blend-poly(methyl methacrylate) (EVA/PMMA) compatibilized with 1 wt% of EVA-g-PMMA, were studied. Image analysis of SEM micrographs showed effective compatibilization with short grafted chains (G8020) that was indicated by lower porosity characteristics. TG/DTG analysis enabled determination of degree of hydrolysis and amount of chloro-functionalized groups. DSC analysis showed higher thermal stability of G8020 polymer. Single lap joint of adhesives/optical fibers were subjected to adhesive testing and obtained results for maximal force applied and adhesive failure suggested the visible influence of the length of graft chains on adhesion.
Read full abstract