Linerless composite pressure vessels, or type V pressure vessels, are gaining increased interest in the transportation industry because they offer improved storage volume and dry weight, especially for low-pressure cryogenic storage. Nevertheless, the design and manufacturing of this type of pressure vessel bring several challenges due to the inherent difficulties in the manufacturing process implementation, assembly, and related analysis of structural integrity due to the severe operating conditions at cryogenic temperatures that should be taken into consideration. In this work, a novel analysis procedure using a finite element model is developed to perform an end-to-end simulation of a linerless pressure vessel, including the relevant features associated with automated fiber placement manufacturing processes regarding thickness and tape profiles, followed by an analysis of the structural response under service conditions. The results show that residual stresses from manufacturing achieve values near 50% of the composite ply transverse strength, which reduces the effective ply transverse load carrying capacity for pressure loading. Transverse damage is triggered and propagated across the vessel thickness before fiber breakage, indicating potential failure by leakage, which was confirmed by hydrostatic tests in the physical prototype at 26 bar. The cryogenic condition analysis revealed that the thermal stresses trigger transverse damage before pressure loading, reducing the estimated leak pressure by 40%. These results highlight the importance of considering the residual stresses that arise from the manufacturing process and the thermal stresses generated during cooling to cryogenic conditions, demonstrating the relevance of the presented methodology for designing linerless cryogenic composite pressure vessels.
Read full abstract