Neurofibromatosis type 1 (NF1) is a highly heterogeneous autosomal genetic disorder characterized by a broad spectrum of clinical and molecular manifestations. The correlations between genotype and phenotype in NF1 remain elusive. This study aimed to elucidate genotype-phenotype associations in a large Chinese cohort of NF1 patients. We included NF1 patients from our center who underwent genetic testing for NF1 variants and systemic examination. Genotype-phenotype correlation analyses were performed, focusing on variation types and involved neurofibromin domains. A total of 195 patients were enrolled, comprising 105 males and 90 females, with a median age of 18years. Truncating variants, single amino acid variations, and splicing variants accounted for 139/195 (71.3%), 23/195 (11.8%), and 33/195 (16.9%), respectively. Patients with splicing variants exhibited a significantly higher prevalence of spinal plexiform neurofibromas (spinal PNF) than those with truncating variants (76.4% vs. 51.8%; p = 0.022). Variations affecting the PKC domain were associated with higher rates of cutaneous neurofibromas (CNF) (100% vs. 64.9%, p < 0.001), Lisch nodules (100% vs. 61.2%, p < 0.001), plexiform neurofibromas (PNF) (100% vs. 95.7%, p = 0.009), and psychiatric disorders (11.8% vs. 1.6%, p = 0.042). Patients with mutations in the CSRD had an elevated risk of secondary primary malignancies (11.6% vs. 2.8%, p = 0.015). GRD involvement might enhance the risk of Lisch nodules (76.9% vs. 53.7%, p = 0.044). Variations in the Sec14-PH domain were correlated with a higher rate of CNF (76.8% vs. 58.6%, p = 0.014). Additionally, we found that the p.R1748* variants carry a high risk of malignancy. Our study suggested some novel genotype-phenotype correlations within a Chinese cohort, providing innovative insights into this complex field that may contribute to genetic counseling, risk stratification, and clinical management for the NF1 population.
Read full abstract