BackgroundWarfarin is a widely prescribed anticoagulant in the clinic. It has a more considerable individual variability, and many factors affect its variability. Mathematical models can quantify the quantitative impact of these factors on individual variability. PurposeThe aim is to comprehensively analyze the advanced warfarin dosing algorithm based on pharmacometrics and machine learning models of personalized warfarin dosage. MethodsA bibliometric analysis of the literature retrieved from PubMed and Scopus was performed using VOSviewer. The relevant literature that reported the precise dosage of warfarin calculation was retrieved from the database. The multiple linear regression (MLR) algorithm was excluded because a recent systematic review that mainly reviewed this algorithm has been reported. The following terms of quantitative systems pharmacology, mechanistic model, physiologically based pharmacokinetic model, artificial intelligence, machine learning, pharmacokinetic, pharmacodynamic, pharmacokinetics, pharmacodynamics, and warfarin were added as MeSH Terms or appearing in Title/Abstract into query box of PubMed, then humans and English as filter were added to retrieve the literature. ResultsBibliometric analysis revealed important co-occuring MeShH and index keywords. Further, the United States, China, and the United Kingdom were among the top countries contributing in this domain. Some studies have established personalized warfarin dosage models using pharmacometrics and machine learning-based algorithms. There were 54 related studies, including 14 pharmacometric models, 31 artificial intelligence models, and 9 model evaluations. Each model has its advantages and disadvantages. The pharmacometric model contains biological or pharmacological mechanisms in structure. The process of pharmacometric model development is very time- and labor-intensive. Machine learning is a purely data-driven approach; its parameters are more mathematical and have less biological interpretation. However, it is faster, more efficient, and less time-consuming. Most published models of machine learning algorithms were established based on cross-sectional data sourced from the database. ConclusionFuture research on personalized warfarin medication should focus on combining the advantages of machine learning and pharmacometrics algorithms to establish a more robust warfarin dosage algorithm. Randomized controlled trials should be performed to evaluate the established algorithm of warfarin dosage. Moreover, a more user-friendly and accessible warfarin precision medicine platform should be developed.
Read full abstract