Cell functionality, driven by remarkable plasticity, is strongly influenced by mechanical forces that regulate mesenchymal stem cell (MSC) fate. This study explores the biomechanical properties of jaw periosteal cells (JPCs) and induced mesenchymal stem cells (iMSCs) under different culture conditions. We cultured both JPCs and iMSCs (n = 3) under normoxic and hypoxic environments, with and without osteogenic differentiation, and on laminin- or gelatin-coated substrates. Using atomic force microscopy, we measured cellular elasticity and Young’s modulus of calcium phosphate precipitates (CaPPs) formed under osteogenic conditions. Correlation analyses between cellular stiffness, quantity of CaPP deposition, and stiffness of formed CaPPs were evaluated. The results showed that iMSCs, despite their softer cellular consistency, tended to form CaPPs of higher elastic moduli than osteogenically differentiated JPCs. Particularly under normoxic conditions, JPCs formed stronger CaPPs with lower cellular stiffness profiles. Conversely, iMSCs cultivated under hypoxic conditions on laminin-coated surfaces produced stronger CaPPs while maintaining lower cellular stiffness. We conclude that JPCs and iMSCs display distinct biomechanical responses to culture conditions. While JPCs increase cellular stiffness during osteogenic differentiation, in particular under hypoxic conditions, iMSCs exhibit a decrease in stiffness, indicating a higher resistance to lower oxygen levels. In both cell types, a lower cellular stiffness profile correlates with enhanced mineralization, indicating that this biomechanical fingerprint serves as a critical marker for osteogenic differentiation.
Read full abstract