Abstract

Dedifferentiation can be induced by small molecules. One of these small molecules used in this study in order to increase the plasticity of differentiation of stem cells was reversine. The objective of present study was to investigate the effect of different concentrations of reversine on the plasticity of ovine fetal bone-marrow mesenchymal stem cells (BM-MSCs). BM-MSCs were extracted from ovine fetal and cultured. Passaged-3 cells were evaluated for their differentiation potential into osteocytes and adipocytes cells. In the present study, BM-MSCs were culture plated in the presence of 0, 300, 600, 900 and 1200nM of reversine. The number of viable cells was determined by MTT test after addition of different concentrations of reversine. Furthermore, expression of the nanog gene was evaluated. The culture without reversine was taken as the control group. Expression of nanog was analysed by immunocytochemistry. Multi-lineage differentiation showed that the BM-MSCs could be differentiated into adipose cells and osteocytes. Our results indicated that the addition of 1200nM of reversine to medium significantly decreased overall proliferation compared to the other treatment groups (p > 0.05). Real-time PCR analysis showed that after addition of 600nM of reversine significantly increased nanog expression compared to other treatments. All treatments received reversine were seen to be relative expression of nanog. Our findings confirm that low concentrations reversine increases the plasticity of ovine BM-MSCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.