At present, global waste tire generation considerably exceeds consumption. Moreover, waste rubber tires (WRTs) are a cause of concern, as huge volumes are being discarded and buried, thus causing serious environmental pollution. Rubberized waste concrete (RWC) is a type of environmentally friendly construction material. The main challenge encountered when manufacturing rubberized concrete is the low adhesive properties between the cement paste and rubber particles. This paper demonstrates the effects, through experiments, of using waste tire rubber instead of recycled coarse aggregate (RCA) on two types of cement, i.e., sulfate-resistant cement (SRC) and ordinary Portland cement (OPC), where SRC is a specially blended cement designed to improve concrete performance and workability in the most aggressive environments. All tested samples contained 10% silica fume (SF) and 0.2% fly ash (FA), and the substitution of recycled aggregate content with waste rubber tier (WRT) at different percentages of 100%, 75%, and 50% was evaluated. The research investigated the synergistic effect on the workability and mechanical properties of various cement types with different amounts of rubber aggregate. It was found that the sulfate-resistant (SRC) type can increase the compressive strength than OPC with a percentage of 25% with the same content of WRT at concrete mix. Moreover, ductility and cracking behavior are improved, and it appears that it is also possible to make lightweight rubber aggregate concrete with this type of mixture.. Using this type of cement, it is possible to restore satisfactory ductility to the waste tires, thus facilitating a reduction in the formation of potential plastic cracks. Moreover, the indicative compressive strength development for SRC with recycled rubber in concrete positively contributes to a reduction in formed cracks. However, SEM microstructural analyses suggest a higher proportion of C–S–H intermixed with sulfate reaction phases of SRC rubberized mortar than those of OPC; thus, given that crystal growth results in a decreased percentage of air voids rather than decreased internal cracking, it is clearly shown that the average crack width increases in OPC mortar compared with SRC. Finally, t-testing was used as an inferential statistical tool to determine whether there is a sizeable distinction between the properties of the two categories of materials, OPC and SRC, by comparing the mean and standard deviation of the values for compressive and tensile strength.