Abstract

AbstractSteel fiber reinforced concrete (SFRC) is known for improving the tensile post‐cracking fatigue behavior of concrete. This paper presents a method to obtain the cyclic tensile behavior of SFRC through sectional analysis, using a limited amount of input parameters. The analytical model is divided into two parts: a monotonic and cyclic model. The monotonic model calculates the uniaxial stress‐crack width curves or constitutive laws of SFRC that fulfill the beam's equilibrium with the smallest error. Afterwards, when the constitutive law is known, the cyclic model predicts the behavior during progressive load cycles. Two methods are used to implement the damage caused by cyclic loading: based on the experimental stiffness during cyclic direct tensile tests (DTTs) and based on a relation between the plastic crack width and the crack width at unloading. The latter option is preferred as no additional DTTs are needed. The proposed methodology therefore eliminates the need for challenging DTTs and only requires more feasible monotonic three‐point bending tests (3PBTs) for model calibration. The model is validated by means of DTTs and cyclic 3PBTs and its potential for extension to fatigue loading is shown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.