Plasmonic nanocavity possessing highly light field confinement and electromagnetic field enhancement can concentrate and enhance the luminescence signal. The plasmonic nanocavity has the great potential value in biosensing research and improve analytical sensitivity. In this work, we constructed a plasmonic nanocavity between circular Au nanoplate-film and spherical Au nanoparticle with tetrahedral DNA nanostructures. The nanocavity structure can regulate the local density of optical states and provide the field restriction to enhance the spontaneous ECL radiation of PEDOT-S dots. Additionally, Au nanoparticle acted as nanoantenna which localized and modulated ECL to directional emission. Because the plasmonic nanocavity effectively collected and redistributed ECL signal, the emission was enhanced by 5.9 times with polarized characteristics. The proposed plasmonic nanocavity-based ECL sensor was further used to detect exosomal miRNA-223-3p in ascites. The detection results indicated the novel sensing strategy can assist early diagnosis of peritoneal metastasis of gastric cancer.
Read full abstract