Abstract
Colloidal semiconductor quantum dots (QDs), with a size tunable bandgap and remarkably high quantum efficiency, have been recognized as ideal light sources in quantum information and light emitting devices. For light sources, besides the emission intensity and spectral profile, the degree of polarization (DoP) is an essential parameter. Here, by embedding a monolayer of QDs inside the nanogap between a bottom Au mirror and a top Ag nanowire, we have demonstrated highly polarized light emission from the QDs with an average DoP of 0.89. In addition to the anisotropic photoluminescence (PL) intensity, the PL spectra are distinct at different polarizations, with an asymmetric spectral shape or even two-peak features. Such an anisotropic emission behavior arises from the coupling between the QDs and the largely confined and polarization-dependent gap-plasmons in the Au/QD/Ag nanocavities in the intermediate coupling regime. Our results demonstrate the possibility of achieving highly polarized light sources by coupling spherical QDs to single anisotropic plasmonic nanocavities, to provide new opportunities in the future design of polarized QD-based display devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.