This study aimed to evaluate the effects of partial replacement of fish meal (FM) with yellow mealworm (Tenebrio molitor, TM) on the growth performance, food utilization and intestinal immune response of juvenile largemouth bass (Micropterus salmoides). Seven diets containing increasing levels of TM (FM substitution) were designed (approximately 0% (0%), 4% (11.1%), 8.1% (22.2%), 12.2% (33.3%), 16.3% (44.4%), 20.4% (55.5%), and 24.5% (66.6%), designated TM0, TM11, TM22, TM33, TM44, TM55, and TM66, respectively). 420 fish were randomly selected and placed in 21 cages (1 m*1 m*1 m, 7 treatments for triplicate, 20 fish per cage). Fish (initial weight 6.25 ± 0.03 g) were fed seven isonitrogenous (47%) and isocaloric (19 MJ kg−1) diets to satiety twice daily for 8 weeks. Compared to the control group (TM0), TM11 showed no significant difference in the weight gain rate (WGR), specific growth rate (SGR) or feed conversion ratio (FCR), while all other TM inclusion groups presented different degrees of decline. There was no significant difference in the whole-body composition among all groups (P > 0.05). Plasma total protein (TP), triglyceride (TG) and albumin (ALB) contents were significantly decreased in TM55 and TM66 (P < 0.05). The highest plasma aspartate transaminase (AST) activity was observed in TM66 (P < 0.05). TM33, TM44 and TM55 showed the lowest activities of plasma alanine amiotransferase (ALT) and alkaline phosphatase (ALP) (P < 0.05). Moreover, increased mRNA levels of superoxide dismutase (SOD) and catalase (CAT) were measured in the TM11 to TM55 groups, while intestinal SOD activity peaked in TM11 (P < 0.05). With the exception of TM11, the other TM inclusion groups showed significant inhibition of the relative expression of RelA, C3 and TNF-α (P < 0.05). All experimental groups exhibited lower expression of IL-10 than TM0 (P < 0.05). The TM11 group showed significantly upregulated expression of IL-1β and TGF-β (P < 0.05). In addition, TLR2 expression was increased in TM11 and TM22 (P < 0.05). Considering enzyme activities and immune-related gene expression, TM supplementation levels should not exceed 4% (TM11).