This study investigated the effects of supplemented l-arginine (l-Arg) in broiler breeder hens' diets on the embryonic development and physiological changes of offspring during the hatching period. A total of 480 35-wk-old healthy female Arbor Acres broiler breeders were randomly divided into 6 groups and fed a corn and soybean meal diet with 6 digestible Arg levels (0.96%, 1.16%, 1.35%, 1.55%, 1.74%, and 1.93%). After a 10-wk experiment, eggs were collected for incubation. At embryonic day (E) 11 to E21, eggs, embryos, and organs (liver, breast muscle, and thigh muscle) were weighed. Total protein, urea nitrogen, creatinine, cholesterol, and triglyceride in plasma, were measured. Plasma level of immunoglobulin G (IgG), immunoglobulin M (IgM), and nitric oxide synthase (NOS) were measured at E13, E17, and E21. Messenger RNA expression of carbamoyl phosphate synthase I (CPS1), ornithine transcarbamylase (OTC), and argininosuccinate synthase (ASS) in liver and breast muscle tissues was assessed at E13, E17, and E21. The results showed that 1.16% Arg in maternal diet increased egg weight (P < 0.05). The level of Arg in maternal diet has a significant effect on organ index and embryo weight of multiple embryonic days (P < 0.05). Embryonic plasma total protein concentration was significantly affected by maternal dietary Arg level (P < 0.05) and exhibited quadratic responses at E11, E15, E17, and E21 (P < 0.01). Plasma urea nitrogen, creatinine, triglyceride, and cholesterol level were also significantly affected by the level of maternal Arg at different embryonic ages (P < 0.05). Dietary digestible Arg levels quadratically influenced plasma urea nitrogen level at E21 (P < 0.05) and cholesterol concentration at E17 and E19 (P < 0.01). L-Arg supplementation in maternal diet significantly improved the IgG level at E17 and E21 (1.16%, 1.35%, 1.55%, and 1.74%; P < 0.05), the IgM level at E13 (1.35%, 1.55%, 1.74%, and 1.93%) and E17 (P < 0.05) and the NOS level at E13, E17, and E21 (P < 0.05). Maternal dietary L-Arg supplementation significantly improved the expression of CPS1 gene, OTC gene (1.16%, 1.35%, and 1.55%), and ASS gene (1.35% and 1.55%) in the liver (P < 0.05), and also enhanced the CPS1 gene (except 1.35%) and OTC gene (1.55% and 1.74%) expression in the breast muscle (P < 0.05). In conclusion, maternal Arg level affected the embryonic development of offspring and regulated the apparent metabolic programming and immunity state of the embryo. Arginine level of 1.55% in hens' diet was beneficial to the protein synthesis and immunity of the offspring in the embryonic period, and it was recommended to obtain healthy offspring.