The rod outer segment (ROS) of retinal photoreceptor cells consists of disk membranes surrounded by the plasma membrane. It is a relatively uncomplicated system in which to investigate cholesterol distribution and its functional consequences in biologically relevant membranes. The light sensitive protein, rhodopsin is the major protein in both membranes, but the lipid compositions are significantly different in the disk and plasma membranes. Cholesterol is high in the ROS plasma membrane. Disk membranes are synthesized at the base of the ROS and are also high in cholesterol. However, cholesterol is rapidly depleted as the disks are apically displaced. During this apical displacement the disk phospholipid fatty acyl chains become progressively more unsaturated, which creates an environment unfavorable to cholesterol. Membrane cholesterol has functional consequences. The high cholesterol found in the plasma membrane and in newly synthesized disks inhibits the activation of rhodopsin. As disks are apically displaced and cholesterol is depleted rhodopsin becomes more responsive to light. This effect of cholesterol on rhodopsin activation has been shown in both native and reconstituted membranes. The modulation of activity can be at least partially explained by the effect of cholesterol on bulk lipid properties. Cholesterol decreases the partial free volume of the hydrocarbon region of the bilayer and thereby inhibits rhodopsin conformational changes required for activation. However, cholesterol binds to rhodopsin and may directly affect the protein also. Furthermore, cholesterol stabilizes rhodopsin to thermal denaturation. The membrane must provide an environment that allows rhodopsin conformational changes required for activation while also stabilizing the protein to thermal denaturation. Cholesterol thus plays a complex role in modulating the activity and stability of rhodopsin, which have implications for other G-protein coupled receptors.
Read full abstract