Abstract

In the dark, rod photoreceptors sustain a continuous influx of Na and Ca ions through the cGMP-gated channels of the rod outer segments (ROS). Whereas Na ions are extruded in the inner segment by the Na-pump, Ca ions are extruded already in the ROS by Na/Ca-K exchange. Our previous findings indicate that in the ROS plasma membrane, exchanger and channel form a complex of two exchangers associated per channel [1,2]. Here, we report evidence of a novel regulatory mechanism of the dimerized exchanger, based on the following findings: (1), thiol-specific cross-linking with dimaleimides resulted in an increase of the Na/Ca-K exchange activity which correlated with the size of the cross-linking reagent, i.e., with increasing separation of the monomers in a dimerized exchanger; (2), partial proteolysis of the exchanger also increased the exchange rate by about a factor of two; (3), disintegration of the channel-exchanger complex by solubilization of the ROS membranes and preparation of proteoliposomes resulted in a twofold enhancement of the exchange rate; however (4), partial proteolysis of proteoliposomes, in which the exchanger molecules exist as monomers, did not result in any enhancement of the exchange rate. These findings suggest an inhibitory protein domain at the contact site of the dimerized exchanger. The physiological implication of this inference will be discussed in terms of a potential allosteric regulation of the exchanger in the channel-exchanger complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call