The detrimental effects of high fructose consumption on metabolic health have been extensively studied. However, limited research has focused on the impact of fructose intake on neuroprotective mechanisms, specifically the expression of insulin receptor (INSR) and glucagon-like peptide-1 receptor (GLP-1R) in the hippocampus. Understanding the effects of fructose on these neuroprotective molecules can provide valuable insights into the potential role of fructose in hippocampal dysfunction. The goal of this study is to aim at the basal plasma levels of lipid profile, insulin, GLP-1, and HOMA-IR, as well as the mRNA and protein expression of neuroprotective molecules such as INSR and GLP-1R in Wistar rats fed a high fructose diet. Rats were separated into control (C) and high fructose (HF) groups. The HF group was given 20% fructose water to drink for 16 weeks. Fructose ingestion significantly increased abdominal fat (C=1.24±0.08 g, HF=1.79±0.19 g, P<0.05) and plasma triglyceride levels (C=179.22±22.85 µg/ml, HF=242.45±14.45 µg/ml, P<0.05), but had no statistically significant effect on body weight and plasma HDL, LDL, total cholesterol, insulin, and GLP-1 levels (P>0.05). Although INSR mRNA expression in the hippocampus was significantly lower in the HF group compared to the control group (P<0.05), GLP-1R mRNA expression did not differ significantly across the groups (P>0.05). Furthermore, whereas INSR and GLP-1R protein levels in the experimental group were on a declining trend, this trend was not substantially different (P>0.05). These data suggest that fructose consumption may be harmful to the hippocampus by lowering the expression of INSR.
Read full abstract