Abstract
The T-2 toxin, a major secondary metabolite of Fusarium Gramineae, is considered a great risk to humans and animals due to its toxicity, such as inducing emesis. The mechanism of emesis is a complex signal involving an imbalance of hormones and neurotransmitters, as well as activity of visceral afferent neurons. The T-2 toxin has been proven to induce emesis and possess the capacity to elevate expressions of intestinal hormones glucagon-like peptide-17–36 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), both of which are important emetic factors. In addition, the activation of calcium-sensitive receptor (CaSR) and transient receptor potential (TRP) channels are engaged in intestinal hormone release. However, it is unknown whether hormones GLP-1 and GIP mediate T-2 toxin-induced emetic response through activating CaSR and TRP channels. To further assess the mechanism of T-2 toxin-induced emesis, we studied the hypothesis that T-2 toxin-caused emetic response and intestinal hormones GLP-1 and GIP released in mink are associated with activating calcium transduction. Following oral gavage and intraperitoneal injection T-2 toxin, emetic responses were observed in a dose-dependent manner, which notably corresponded to the secretion of GLP-1 and GIP, and were suppressed by pretreatment with respective antagonist Exending9–39 and Pro3GIP. Additional research found that NPS-2143 (NPS) and ruthenium red (RR), respective antagonists of CaSR and TRP channels, dramatically inhibited both T-2 toxin-induced emesis response and the expression of plasma GLP-1 and GIP. According to these data, we observed that T-2 toxin-induced emetic response corresponds to secretion of GLP-1 and GIP via calcium transduction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.